A NOTE ON POWERS OF HAUSDORFF FIELDS

B.J. DAY

School of Mathematics and Physics, Macquarie University, North Ryde, N.S.W. 2113, Australia

Communicated by G.M. Kelly Received 10 August 1982

1. Statement of results

The following duality theorem does not seem to have been explicitly noted. Let K be a hausdorff commutative ring, in the sense that the ring-operations are continuous. Let A be the category of hausdorff K-modules – in the sense that addition and scalar multiplication in the modules are continuous – and continuous linear maps. Let V be the category of untopologized K-modules and linear maps, and let $T: A^{op} \rightarrow V$ be the functor sending $A \in A$ to the K-module A(A, K). It is easily seen that T has the left adjoint S sending $V \in V$ to the K-module V(V, K), topologized as a subspace (obviously closed) of the power $K^{|V|}$ in A, where |V| is the underlying set of V. Since S takes its values in the (epireflective) full subcategory SP of A given by the closed submodules of powers K^X of K with $X \in Set$, we have an adjunction $S \rightarrow R: SP^{op} \rightarrow V$ where R is the restriction of T.

Theorem. If the underlying ring of K is a field, then the adjunction $S \dashv R : SP^{op} \rightarrow V$ is an equivalence of categories. If K is a discrete principal ideal domain, then R is fully faithful and and thus gives an equivalence between SP^{op} and a full reflective subcategory of V. In both cases $R : SP^{op} \rightarrow V$ preserves arbitrary coproducts; in fact $T : A^{op} \rightarrow V$ preserves these.

Corollary 1. If the hausdorff ring K is a field, every closed subspace of a power K^X of K is isomorphic to a power K^Y of K. \Box

Corollary 2. If K is a discrete principal ideal domain, and if $K^X \rightarrow B$ is an epimorphism in **SP**, then B is a power K^Y of K. \Box

Remarks. For discrete fields the Theorem is contained in Lefschetz [3]. When $K = \mathbb{R}$ or C, Corollary 1 is contained in Exercise 6 of Chapter 4 of Schaefer [6], and is attributed to Martineau [5]. This Corollary for $K = \mathbb{R}$ was also rediscovered in [1].

0022-4049/83/\$03.00 © 1983 North-Holland

As is clear from the proof, the analogous result still holds where K is a hausdorff division ring.

2. Proof of the theorem

We first verify that T sends arbitrary products in A to coproducts in V. For finite products this is clear. The general case reduces to this by the observation that the kernel of a map $g:\prod_{\lambda \in \Lambda} A_{\lambda} \to K$ contains $\prod_{\lambda \in M} A_{\lambda}$ for some $M \subset \Lambda$ with $\Lambda - M$ finite; we have only to consider $g^{-1}(W)$, where W is a neighbourhood of 0 in K which contains no ideal except $\{0\}$.

Now observe that the full subcategory T of A determined by the *finite* powers of K is the Lawvere theory [2] of K-modules, so that V is equivalent to the full reflective subcategory of the functor-category [T, Set] given by the finite-product-preserving functors; and observe that the composite of $T: A^{op} \rightarrow V$ with the inclusion $V \rightarrow [T, Set]$ sends A to the representable functor $A(A, -): T \rightarrow Set$. In consequence, as we may see from Ch. X, §5 of [4], the functor $ST: A \rightarrow A$ is the right Kan extension of the inclusion $J: T \rightarrow A$ along itself; so that STA is the limit in A of the functor $A/J \rightarrow A$ sending the object $f: A \rightarrow K^n$ of the comma-category A/J to K^n , while the counit ε of the adjunction $S \rightarrow T$ has as its A-component the evident map $\varepsilon_A: A \rightarrow STA$ in A into this limit.

Using the canonical diagonal form for *m*-by-*n* matrices over the principal ideal domain *K*, and the fact that ideals of *K* are closed, we easily see that any submodule of K^n for a finite *n* is closed, and is isomorphic to K^m for some $m \le n$. It follows that every $A \to K^n$ in A/J factorizes as $A \to K^m \to K^n$ into a surjection followed by the inclusion of a closed submodule. Thus the cofiltered category A/J has, as an *initial* fuil subcategory (see [4], Ch. IX, §3), the codirected poset A//J of surjections $A \to K^n$. It follows that STA is equally the limit of $A//J \to A$. Since each map $A \to K^n$ in A//J is surjective and *a fortiori* has a dense image, the map $\varepsilon_A : A \to STA$ into the codirected limit also has a dense image, by a simple argument.

We conclude that ε_A is an isomorphism exactly when it is the inclusion of a closed subspace. When this is so, we have $A \in \mathbf{SP}$ since $STA \in \mathbf{SP}$. Conversely, when $A \in \mathbf{SP}$, so that we have a closed-subspace-inclusion $j: A \to K^X$, we observe that K^X is $S(X \cdot K)$, where $X \cdot K$ is the copower (the coproduct in \mathbf{V} of X copies of K); hence j factorizes through ε_A , which is consequently a closed-subspace-inclusion. It follows that ε_A is invertible exactly when $A \in \mathbf{SP}$; so that $R: \mathbf{SP}^{\mathrm{op}} \to \mathbf{V}$ is fully faithful.

When K is a field, R is essentially surjective and is hence an equivalence; for any $V \in \mathbf{V}$, being a copower $X \cdot K$, is isomorphic to $R(K^X)$, by the first paragraph of the proof.

References

1

- D.C. Hunt, S.A. Morris, and A.J. van der Poorten, Closed subgroups of products of reals, Bull. London Math. Soc. 7 (1975) 124-128.
- [2] F.W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963) 869-872.
- [3] S. Lefschetz, Algebraic Topology, Amer. Math. Soc. Colloquium Publications 27 (1942).
- [4] S. MacLane, Categories for the Working Mathematician, Graduate Texts in Mathematics 5 (Springer, New York-Heidelberg-Berlin, 1971).
- [5] A. Martineau, Sur une propriété charactéristique d'un produit de droites, Arch. Math. 11 (1960) 423-426.
- [6] H.H. Schaefer, Topological Vector Spaces (Macmillan, New York, 1966).