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1. Statement of results 

The following duality theorem does not seem to have belen explicitly noted. Let K 
be a hausdorff commutative ring, in the sense that the ring-operations are 
continuous. Let A be the category of hausdorff K-modules - in the sense that 
addition and scalar multiplication in the modules are continuous - and continuous 
linear maps. Let V be the category of untopologized K-modules and linear maps, 
and let T: A”P*V be the functor sending A E A to the K-module A(A, K). It is easily 
seen that T has the left adjoint S sending V/E V to the K-module V( v,K), topo- 
logized as a subspace (obviously closed) of the power &?‘I in A, where 1 VI is the 
underlying set of c/. Since S takes its values in the (epireflective) full subcategory SP 
of A given by the closed submodules of powers KX of K with XE Set, we have an 
adjunction S i R : SPOP -*V where R is the restriction of T. 

Theorem. If the underlying ring of K is a field, then the adjunction S -I R : SPOP -+ V 
is an equivalence of categories. If K is a discrete principal ideal domain, then R is 
fully faithfur and and thus gives an equivalence between SPOP and a full reflective 
subcategory of V. In both cases R : SP OP -+ V preserves arbitrary coproducts; in fact 
T : A”P +V preserves these. 

Corollary 1. If the hausdorff ring K is a field, every closed subspace of a power KX 
of K is isomorphic to a power K y of K. 0 

Cordiary 2. If K is a discrete principal ideal domain, and if KX -4 is an epi- 
morphism in SP, then B is a power K y of K. q 

Remarks. For discrete fields the Theorem is contained in Lefschetz [3]. When K = 
or C, Corollary 1 is contained in Exercise 6 of Chapter 4 of Schaefer [6], and is 
attributed to Martineau [5]. This Corollary for K = was also rediscovered in [I] l 
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As is clear from the proof, the analogous result still holds where K is a hausdorff 
division ring. 

2. Proof of the theorem 

We first verify that T sends arbitrary products in A to coproducts in V. For finite 
products this is clear. The general case reduces to this by the observation that the 
kernel of a map g:fl,,,,&+K contains nAEMA~ for some MC/1 with /i --A4 
finite; we have only to consider g-‘(W), where W is a neighbourhood of 0 in K 
which contains no idea1 except (0). 

Now observe that the full subcategory T of A determined by the finite powers of 
K is the Lawvere theory [2] of K-modules, so that V is equivalent to the full reflec- 
tive subcategory of the functor-category [T,Set] given by the finite-product- 
preserving functors; and olxerve that the composite of T: A”P +V with the inclusion 
V +[T,Set] sends A to the representable functor A(A, -) : T *Set. In consequence, 
as we may see from Ch. X, $5 of (41, the functor ST: A+A is the right Kan 
extension of the inclusion J: T *A along itself; so that STA is the limit in A of the 
functor A/J-+A sending the object f: A+K” of the comma-category A/J to Kn, 

while the counit e of the adjunction S+ T has as its A-component the evident map 
c,~ : A -+STA in A into this limit. 

Using the canonical diagonal form for m-by-n matrices over the principal ideal 
domain K, and the fact that ideals of K are closed, we easily see that any submodule 
of K n for a finite n is closed, and is isomorphic to K’” for some m I n. It follows that 
every A+K” in A/J factorizes as A -+ K n1 +Kn into a surjection followed by the 
inclusion of a closed submodule. Thus the cofiltered category A/J has, as an initial 
fuil subcategory (see [4), Ch. IX, §3), the codirected poset A//J of surjections 
.4 -+K”. It follows that STA is equally the limit of A//J-+A. Since each map A+Kn 
in A //J is surjective and a forfiori has a dense image, the map &A : A+STA into the 
codirected limit also has a dense image, by a simple argument. 

We conclude that &A is an isomorphism exactly when it is the inclusion of a closed 
subspace. When this is so, we have A E SP since STA ESP. Conversely, when 
A E SP, so that we have a closed-subspace-inclusion j : A+KX, we observe that KX 

is S(X - K), where X - K is the copower (the coproduct in V of X copies of K); hence 
/ factorizes through E,~, which is consequently a closed-subspace-inclusion. It 
allows that c,~ is invertible exactly when A E SP; so that R : SPOP+V is fully 

faithful. 
when K is a field, R is essentially surjective and is hence an equivalence; for any 

1’~ vr being a copower Xm K, is isomorphic to R(Kx), by the first paragraph of the 
proof. 
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